

Météo-France Python API

Client Python pour l’API Météo-France. | Python client for Météo-France API.

[image: PyPI] [https://pypi.org/project/meteofrance-api/] [image: GitHub Release] [https://github.com/hacf-fr/meteofrance-api/releases] [image: Python Version] [https://pypi.org/project/meteofrance-api/] [image: License] [https://opensource.org/licenses/MIT]

[image: Read the documentation at https://meteofrance-api.readthedocs.io/] [image: Tests] [https://github.com/hacf-fr/meteofrance-api/actions?workflow=Tests] [image: Codecov] [https://codecov.io/gh/hacf-fr/meteofrance-api] [image: GitHub Activity] [https://github.com/hacf-fr/meteofrance-api/commits/master]

[image: pre-commit] [https://github.com/pre-commit/pre-commit] [image: Black] [https://github.com/psf/black]

You will find English README content in the section For English speaking users.

Vous trouverez le contenu francophone du README dans la section Pour les francophones.

Pour les francophones

Description

Ce package Python permet de gérer la communication avec l’API non publique de
Météo-France utilisée par les applications mobiles officielles.

Le client permet:

	Rechercher des lieux de prévisions.

	Accéder aux prévisions météorologiques horaires ou quotidiennes.

	Accéder aux prévisions de pluie dans l’heure quand disponibles.

	Accéder aux alertes météo pour chaque département français et d’Andorre. Deux
bulletins sont disponibles : un synthétique et un second avec l’évolution des alertes
pour les prochaines 24 heures (exemple ici [https://vigilance.meteofrance.fr/fr/gers]).

Ce package a été développé avec l’intention d’être utilisé par Home-Assistant [https://home-assistant.io/]
mais il peut être utilisé dans d’autres contextes.

Installation

Pour utiliser le module Python meteofrance vous devez en premier installer
le package en utilisant pip [https://pip.pypa.io/] depuis PyPI [https://pypi.org/]:

$ pip install meteofrance-api

Vous pouvez trouver un exemple d’usage dans un module Python en regardant
le test d’intégration.

Contribuer

Les contributions sont les bienvenues. Veuillez consulter les bonnes pratiques
détaillées dans CONTRIBUTING.rst.

For English speaking users

Description

This Python package manages the communication with the private Météo-France API
used by the official mobile applications.

The client allows:

	Search a forecast location.

	Fetch daily or hourly weather forecast.

	Fetch rain forecast within the next hour if available.

	Fetch the weather alerts or phenomenoms for each French department or Andorre.
Two bulletin are availabe: one basic and an other advanced with the timelaps evolution
for the next 24 hours (example here [https://vigilance.meteofrance.fr/fr/gers]).

This package have been developed to be used with Home-Assistant [https://home-assistant.io/]
but it can be used in other contexts.

Installation

To use the meteofrance Python module, you have to install this package first via
pip [https://pip.pypa.io/] from PyPI [https://pypi.org/]:

$ pip install meteofrance-api

You will find an example ot usage in a Python program in the integration test.

Contributing

Contributions are welcomed. Please check the guidelines in CONTRIBUTING.rst.

Credits

This project was generated from @cjolowicz [https://github.com/cjolowicz]’s Hypermodern Python Cookiecutter [https://github.com/cjolowicz/cookiecutter-hypermodern-python] template.

Reference

	meteofrance

	meteofrance.model

meteofrance

Météo-France API.

	
class meteofrance_api.MeteoFranceClient(access_token=None)

	Proxy to the Météo-France REST API.

You will find methods and helpers to request weather forecast, rain forecast and
weather alert bulletin.

	Parameters:

	access_token (str | None) –

	
get_forecast(latitude, longitude, language='fr')

	Retrieve the weather forecast for a given GPS location.

Results can be fetched in french or english according to the language parameter.

	Parameters:

	
	latitude (float) – Latitude in degree of the GPS point corresponding to the weather
forecast.

	longitude (float) – Longitude in degree of the GPS point corresponding to the weather
forecast.

	language (str) – Optional; If language is equal “fr” (default value) results will
be in French. All other value will give results in English.

	Returns:

	A Forecast intance representing the hourly and daily weather forecast.

	Return type:

	Forecast

	
get_forecast_for_place(place, language='fr')

	Retrieve the weather forecast for a given Place instance.

Results can be fetched in french or english according to the language parameter.

	Parameters:

	
	place (Place) – Place class instance corresponding to a location.

	language (str) – Optional; If language is equal “fr” (default value) results will
be in French. All other value will give results in English.

	Returns:

	A Forecast intance representing the hourly and daily weather forecast.

	Return type:

	Forecast

	
get_observation(latitude, longitude, language='fr')

	Retrieve the weather observation for a given GPS location.

Results can be fetched in french or english according to the language parameter.

	Parameters:

	
	latitude (float) – Latitude in degree of the GPS point corresponding to the weather
forecast.

	longitude (float) – Longitude in degree of the GPS point corresponding to the weather
forecast.

	language (str) – Optional; If language is equal “fr” (default value) results will
be in French. All other value will give results in English.

	Returns:

	An Observation instance.

	Return type:

	Observation

	
get_observation_for_place(place, language='fr')

	Retrieve the weather observation for a given Place instance.

Results can be fetched in french or english according to the language parameter.

	Parameters:

	
	place (Place) – Place class instance corresponding to a location.

	language (str) – Optional; If language is equal “fr” (default value) results will
be in French. All other value will give results in English.

	Returns:

	An Observation intance.

	Return type:

	Observation

	
get_picture_of_the_day(domain='france')

	Retrieve the picture of the day image URL & description.

	Parameters:

	domain (str) – could be france

	Returns:

	PictureOfTheDay instance with the URL and the description of the picture of
the day.

	Return type:

	PictureOfTheDay

	
get_rain(latitude, longitude, language='fr')

	Retrieve the next 1 hour rain forecast for a given GPS the location.

Results can be fetched in french or english according to the language parameter.

	Parameters:

	
	latitude (float) – Latitude in degree of the GPS point corresponding to the rain
forecast.

	longitude (float) – Longitude in degree of the GPS point corresponding to the rain
forecast.

	language (str) – Optional; If language is equal “fr” (default value) results will
be in French. All other value will give results in English.

	Returns:

	A Rain instance representing the next hour rain forecast.

	Return type:

	Rain

	
get_warning_current_phenomenoms(domain, depth=0, with_coastal_bulletin=False)

	Return the current weather phenomenoms (or alerts) for a given domain.

	Parameters:

	
	domain (str) – could be france or any metropolitan France department numbers on
two digits. For some departments you can access an additional bulletin
for coastal phenomenoms. To access it add 10 after the domain id
(example: 1310).

	depth (int) – Optional; To be used with domain = ‘france’. With depth = 0 the
results will show only natinal sum up of the weather alerts. If
depth = 1, you will have in addition, the bulletin for all metropolitan
France department and Andorre

	with_coastal_bulletin (bool) – Optional; If set to True (default is False), you can
get the basic bulletin and coastal bulletin merged.

	Returns:

	A warning.CurrentPhenomenons instance representing the weather alert
bulletin.

	Return type:

	CurrentPhenomenons

	
get_warning_dictionary(language='fr')

	Retrieves the meteorological dictionary from the Météo-France API.

This dictionary includes information about various meteorological
phenomena and color codes used for weather warnings.

	Parameters:

	language (str) – The language in which to retrieve the
dictionary data. Default is ‘fr’ for French. Other language codes
can be used if supported by the API.

	Returns:

	
	An object containing structured data about
	meteorological phenomena and warning color codes. It has two main
attributes: ‘phenomenons’ (list of PhenomenonDictionaryEntry) and
‘colors’ (list of ColorDictionaryEntry).

	Return type:

	WarningDictionary

	
get_warning_full(domain, with_coastal_bulletin=False)

	Retrieve a complete bulletin of the weather phenomenons for a given domain.

For a given domain we can access the maximum alert, a timelaps of the alert
evolution for the next 24 hours, a list of alerts and other metadatas.

	Parameters:

	
	domain (str) – could be france or any metropolitan France department numbers on
two digits. For some departments you can access an additional bulletin
for coastal phenomenoms. To access it add 10 after the domain id
(example: 1310).

	with_coastal_bulletin (bool) – Optional; If set to True (default is False), you can
get the basic bulletin and coastal bulletin merged.

	Returns:

	A warning.Full instance representing the complete weather alert bulletin.

	Return type:

	Full

	
get_warning_thumbnail(domain='france')

	Retrieve the thumbnail URL of the weather phenomenoms or alerts map.

	Parameters:

	domain (str) – could be france or any metropolitan France department numbers on
two digits.

	Returns:

	The URL of the thumbnail representing the weather alert status.

	Return type:

	str

	
search_places(search_query, latitude=None, longitude=None)

	Search the places (cities) linked to a query by name.

You can add GPS coordinates in parameter to search places arround a given
location.

	Parameters:

	
	search_query (str) – A complete name, only a part of a name or a postal code (for
France only) corresponding to a city in the world.

	latitude (str | None) – Optional; Latitude in degree of a reference point to order
results. The nearest places first.

	longitude (str | None) – Optional; Longitude in degree of a reference point to order
results. The nearest places first.

	Returns:

	A list of places (Place instance) corresponding to the query.

	Return type:

	List[Place]

meteofrance.model

Météo-France models for the REST API.

	
class meteofrance_api.model.CurrentPhenomenons(raw_data)

	Class to access the results of a warning/currentPhenomenons REST API request.

For coastal department two bulletins are avalaible corresponding to two different
domains.

	Parameters:

	raw_data (WarnningCurrentPhenomenonsData) –

	
update_time

	A timestamp (as integer) corresponding to the latest update of the
pheomenoms.

	
end_validity_time

	A timestamp (as integer) corresponding to expiration date of
the phenomenoms.

	
domain_id

	A string corresponding do the domain ID of the bulletin. Value is
‘France’ or a department number.

	
phenomenons_max_colors

	A list of dictionnaries with type of phenomenoms and the
current alert level.

	
property domain_id: str

	Return the domain ID of the phenomenoms.

	
property end_validity_time: int

	Return the end of validty time of the phenomenoms.

	
get_domain_max_color()

	Get the maximum level of alert of a given domain (class helper).

	Returns:

	An integer corresponding to the status code representing the maximum alert.

	Return type:

	int

	
merge_with_coastal_phenomenons(coastal_phenomenoms)

	Merge the classical phenomenoms bulleting with the coastal one.

Extend the phenomenomes_max_colors property with the content of the coastal
weather alert bulletin.

	Parameters:

	coastal_phenomenoms (CurrentPhenomenons) – CurrentPhenomenons instance corresponding to the
coastal weather alert bulletin.

	Return type:

	None

	
property phenomenons_max_colors: List[PhenomenonMaxColor]

	Return the list and colors of the phenomenoms.

	
property update_time: int

	Return the update time of the phenomenoms.

	
class meteofrance_api.model.Forecast(raw_data)

	Class to access the results of a forecast API request.

	Parameters:

	raw_data (ForecastData) –

	
position

	A dictionary with metadata about the position of the forecast place.

	
updated_on

	A timestamp as int corresponding to the latest update date.

	
daily_forecast

	A list of dictionaries to describe the daily forecast for the
next 15 days.

	
forecast

	A list of dictionaries to describe the hourly forecast for the next
days.

	
probability_forecast

	A list of dictionaries to describe the event probability
forecast (rain, snow, freezing) for next 10 days.

	
today_forecast

	A dictionary corresponding to the daily forecast for the current

	
day.

	

	
nearest_forecast

	A dictionary corresponding to the nearest hourly forecast.

	
current_forecast

	A dictionary corresponding to the hourly forecast for the
current hour.

	
property current_forecast: Dict[str, Any]

	Return the forecast of the current hour.

	
property daily_forecast: List[Dict[str, Any]]

	Return the daily forecast for the following days.

	
property forecast: List[Dict[str, Any]]

	Return the hourly forecast.

	
property nearest_forecast: Dict[str, Any]

	Return the nearest hourly forecast.

	
property position: Dict[str, Any]

	Return the position information of the forecast.

	
property probability_forecast: List[Dict[str, Any]]

	Return the wheather event forecast.

	
timestamp_to_locale_time(timestamp)

	Convert timestamp in datetime in the forecast location timezone (Helper).

	Parameters:

	timestamp (int) – An integer to describe the UNIX timestamp.

	Returns:

	
	Datetime instance corresponding to the timestamp with the timezone of the
	forecast location.

	Return type:

	datetime

	
property today_forecast: Dict[str, Any]

	Return the forecast for today.

	
property updated_on: int

	Return the update timestamp of the forecast.

	
class meteofrance_api.model.Full(raw_data)

	This class allows to access the results of a warning/full API command.

For a given domain we can access the maximum alert, a timelaps of the alert
evolution for the next 24 hours, and a list of alerts.

For coastal department two bulletins are avalaible corresponding to two different
domains.

	Parameters:

	raw_data (WarnningFullData) –

	
update_time

	A timestamp (as integer) corresponding to the latest update of the
pheomenoms.

	
end_validity_time

	A timestamp (as integer) corresponding to expiration date of
the phenomenoms.

	
domain_id

	A string corresponding do the domain ID of the bulletin. Value is
‘France’ or a department number.

	
color_max

	An integer representing the maximum alert level in the domain.

	
timelaps

	A list of dictionnaries corresponding to the schedule of each
phenomenoms in the next 24 hours.

	
phenomenons_items

	list of dictionnaries corresponding the alert level for each
phenomenoms type.

	
property color_max: int

	Return the color max of the domain.

	
property domain_id: str

	Return the domain ID of the the full bulletin.

	
property end_validity_time: int

	Return the end of validty time of the full bulletin.

	
merge_with_coastal_phenomenons(coastal_phenomenoms)

	Merge the classical phenomenon bulletin with the coastal one.

	Extend the color_max, timelaps and phenomenons_items properties with the content
	of the coastal weather alert bulletin.

	Parameters:

	coastal_phenomenoms (Full) – Full instance corresponding to the coastal weather
alert bulletin.

	Return type:

	None

	
property phenomenons_items: List[PhenomenonMaxColor]

	Return the phenomenom list of the domain.

	
property timelaps: List[Dict[str, Any]]

	Return the timelaps of each phenomenom for the domain.

	
property update_time: int

	Return the update time of the full bulletin.

	
class meteofrance_api.model.Observation(raw_data)

	Class to access the results of an observation API request.

	Parameters:

	raw_data (ObservationData) –

	
timezone

	The observation timezone

	
time

	The time at which the observation was made

	
temperature

	The observed temperature (°C)

	
wind_speed

	The observed wind speed (km/h)

	
wind_direction

	The observed wind direction (°)

	
wind_icon

	An icon ID illustrating the observed wind direction

	
weather_icon

	An icon ID illustrating the observed weather condition

	
weather_description

	A description of the observed weather condition

	
property temperature: float | None

	Returns the observed temp (°C).

	
property time_as_datetime: datetime | None

	Returns the time at which the observation was made.

	
property time_as_string: str | None

	Returns the time at which the observation was made.

	
property timezone: str | None

	Returns the observation timezone.

	
property weather_description: str | None

	Returns a description of the observed weather condition.

	
property weather_icon: str | None

	Returns an icon ID illustrating the observed weather condition.

	
property wind_direction: int | None

	Returns the observed wind direction (°).

	
property wind_icon: str | None

	Returns an icon ID illustrating the observed wind direction.

	
property wind_speed: float | None

	Returns the observed wind speed (km/h).

	
class meteofrance_api.model.PictureOfTheDay(raw_data)

	Class to access the results of a ImageJour/last REST API request.

	Parameters:

	raw_data (PictureOfTheDayData) –

	
image_url

	A string corresponding to the picture of the day URL.

	
image_hd_url

	A string corresponding to the URL for the HD version of the
picture of the day.

	
descritpion

	A string with the description of the picture of the day.

	
property description: str

	Return the description of the picture of the day.

	
property image_url: str

	Return the image URL of the picture of the day.

	
class meteofrance_api.model.Place(raw_data)

	Class to access the results of ‘places’ REST API request.

	Parameters:

	raw_data (PlaceData) –

	
insee

	A string corresponding to the INSEE ID of the place.

	
name

	Name of the place.

	
lat

	A float with the latitude in degree of the place.

	
lon

	A float with the longitude in degree of the place

	
country

	A string corresponding to the country code of the place.

	
admin

	A string with the name of the administrative area (‘Département’ for
France and Region for other countries).

	
admin2

	A string correponding to an administrative code (‘Département’ number
for France)

	
postCode

	A string corresponding to the ZIP code of location.

	
property admin: str | None

	Return the admin of the place.

	
property admin2: str | None

	Return the admin2 of the place.

	
property country: str

	Return the country code of the place.

	
property insee: str | None

	Return the INSEE ID of the place.

	
property latitude: float

	Return the latitude of the place.

	
property longitude: float

	Return the longitude of the place.

	
property name: str

	Return the name of the place.

	
property postal_code: str | None

	Return the postal code of the place.

	
class meteofrance_api.model.Rain(raw_data)

	Class to access the results of ‘rain’ REST API request.

	Parameters:

	raw_data (RainData) –

	
position

	A dictionary with metadata about the position of the forecast place.

	
updated_on

	A timestamp as int corresponding to the latest update date.

	
forecast

	A list of dictionaries to describe the following next hour rain
forecast.

	
quality

	An integer. Don’t know yet the usage.

	
property forecast: List[Dict[str, Any]]

	Return the rain forecast.

	
next_rain_date_locale()

	Estimate the date of the next rain in the Place timezone (Helper).

	Returns:

	A datetime instance representing the date estimation of the next rain within
the next hour.
If no rain is expected in the following hour ‘None’ is returned.

The datetime use the location timezone.

	Return type:

	datetime | None

	
property position: Dict[str, Any]

	Return the position information of the rain forecast.

	
property quality: int

	Return the quality of the rain forecast.

	
timestamp_to_locale_time(timestamp)

	Convert timestamp in datetime with rain forecast location timezone (Helper).

	Parameters:

	timestamp (int) – An integer representing the UNIX timestamp.

	Returns:

	
	A datetime instance corresponding to the timestamp with the timezone of the
	rain forecast location.

	Return type:

	datetime

	
property updated_on: int

	Return the update timestamp of the rain forecast.

	
class meteofrance_api.model.WarningDictionary(raw_data)

	A class to represent and manipulate the Meteo France meteorological dictionary data.

	Parameters:

	raw_data (WarningDictionaryData) –

	
get_phenomenon_name_by_id(phenomenon_id

	int): Returns the name of the phenomenon for the given ID.

	
get_color_name_by_id(color_id

	int): Returns the name of the color for the given ID.

	
get_color_by_id(color_id)

	Retrieves a warning color based on its ID.

	Parameters:

	color_id (int) – The ID of the color.

	Returns:

	The the color object if found, otherwise returns None.

	Return type:

	ColorDictionaryEntry | None

	
get_color_name_by_id(color_id)

	Retrieves the name of a warning color based on its ID.

	Parameters:

	color_id (int) – The ID of the color.

	Returns:

	The name of the color if found, otherwise returns None.

	Return type:

	str | None

	
get_phenomenon_by_id(phenomenon_id)

	Retrieves a meteorological phenomenon based on its ID.

	Parameters:

	phenomenon_id (int) – The ID of the meteorological phenomenon.

	Returns:

	The phenomenon if found, otherwise returns None.

	Return type:

	PhenomenonDictionaryEntry | None

	
get_phenomenon_name_by_id(phenomenon_id)

	Retrieves the name of a meteorological phenomenon based on its ID.

	Parameters:

	phenomenon_id (int) – The ID of the meteorological phenomenon.

	Returns:

	The name of the phenomenon if found, otherwise returns None.

	Return type:

	str | None

Contributor Guide

Thank you for your interest in improving this project.
This project is open-source under the MIT license [https://opensource.org/licenses/MIT] and
welcomes contributions in the form of bug reports, feature requests, and pull requests.

Here is a list of important resources for contributors:

	Source Code [https://github.com/hacf-fr/meteofrance-api]

	Documentation [https://meteofrance-api.readthedocs.io/]

	Issue Tracker [https://github.com/hacf-fr/meteofrance-api/issues]

	Code of Conduct

How to report a bug

Report bugs on the Issue Tracker [https://github.com/hacf-fr/meteofrance-api/issues].

When filing an issue, make sure to answer these questions:

	Which operating system and Python version are you using?

	Which version of this project are you using?

	What did you do?

	What did you expect to see?

	What did you see instead?

The best way to get your bug fixed is to provide a test case,
and/or steps to reproduce the issue.

How to request a feature

Request features on the Issue Tracker [https://github.com/hacf-fr/meteofrance-api/issues].

How to set up your development environment

You need Python 3.8+ and the following tools:

	Poetry [https://python-poetry.org/]

	Nox [https://nox.thea.codes/]

	nox-poetry [https://nox-poetry.readthedocs.io/]

Install the package with development requirements:

$ poetry install

You can now run an interactive Python session:

$ poetry run python

How to test the project

Run the full test suite:

$ nox

List the available Nox sessions:

$ nox --list-sessions

You can also run a specific Nox session.
For example, invoke the unit test suite like this:

$ nox --session=tests

Unit tests are located in the tests directory,
and are written using the pytest [https://pytest.readthedocs.io/] testing framework.

How to submit changes

Open a pull request [https://github.com/hacf-fr/meteofrance-api/pulls] to submit changes to this project.

Your pull request needs to meet the following guidelines for acceptance:

	The Nox test suite must pass without errors and warnings.

	Include unit tests. This project maintains 100% code coverage.

	If your changes add functionality, update the documentation accordingly.

Feel free to submit early, though—we can always iterate on this.

To run linting and code formatting checks before committing your change, you can install pre-commit as a Git hook by running the following command:

$ nox --session=pre-commit -- install

It is recommended to open an issue before starting work on anything.
This will allow a chance to talk it over with the owners and validate your approach.

Contributor Covenant Code of Conduct

Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

Our Standards

Examples of behavior that contributes to a positive environment for our community include:

	Demonstrating empathy and kindness toward other people

	Being respectful of differing opinions, viewpoints, and experiences

	Giving and gracefully accepting constructive feedback

	Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience

	Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:

	The use of sexualized language or imagery, and sexual attention or
advances of any kind

	Trolling, insulting or derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or email
address, without their explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate.

Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at contact@hacf.fr. All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the community.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 2.0,
available at https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder [https://github.com/mozilla/diversity].

For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at https://www.contributor-covenant.org/translations.

MIT License

Copyright (c) 2020 HACF Home Assistant Communauté Francophone

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

The software is provided “as is”, without warranty of any kind, express or
implied, including but not limited to the warranties of merchantability,
fitness for a particular purpose and noninfringement. In no event shall the
authors or copyright holders be liable for any claim, damages or other
liability, whether in an action of contract, tort or otherwise, arising from,
out of or in connection with the software or the use or other dealings in the
software.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 meteofrance_api	

 	
 	
 meteofrance_api.model	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

A

 	
 	admin (meteofrance_api.model.Place attribute)

 	(meteofrance_api.model.Place property)

 	
 	admin2 (meteofrance_api.model.Place attribute)

 	(meteofrance_api.model.Place property)

C

 	
 	color_max (meteofrance_api.model.Full attribute)

 	(meteofrance_api.model.Full property)

 	country (meteofrance_api.model.Place attribute)

 	(meteofrance_api.model.Place property)

 	
 	current_forecast (meteofrance_api.model.Forecast attribute)

 	(meteofrance_api.model.Forecast property)

 	CurrentPhenomenons (class in meteofrance_api.model)

D

 	
 	daily_forecast (meteofrance_api.model.Forecast attribute)

 	(meteofrance_api.model.Forecast property)

 	description (meteofrance_api.model.PictureOfTheDay property)

 	descritpion (meteofrance_api.model.PictureOfTheDay attribute)

 	
 	domain_id (meteofrance_api.model.CurrentPhenomenons attribute)

 	(meteofrance_api.model.CurrentPhenomenons property)

 	(meteofrance_api.model.Full attribute)

 	(meteofrance_api.model.Full property)

E

 	
 	end_validity_time (meteofrance_api.model.CurrentPhenomenons attribute)

 	(meteofrance_api.model.CurrentPhenomenons property)

 	(meteofrance_api.model.Full attribute)

 	(meteofrance_api.model.Full property)

F

 	
 	Forecast (class in meteofrance_api.model)

 	forecast (meteofrance_api.model.Forecast attribute)

 	(meteofrance_api.model.Forecast property)

 	(meteofrance_api.model.Rain attribute)

 	(meteofrance_api.model.Rain property)

 	
 	Full (class in meteofrance_api.model)

G

 	
 	get_color_by_id() (meteofrance_api.model.WarningDictionary method)

 	get_color_name_by_id() (meteofrance_api.model.WarningDictionary method)

 	get_domain_max_color() (meteofrance_api.model.CurrentPhenomenons method)

 	get_forecast() (meteofrance_api.MeteoFranceClient method)

 	get_forecast_for_place() (meteofrance_api.MeteoFranceClient method)

 	get_observation() (meteofrance_api.MeteoFranceClient method)

 	get_observation_for_place() (meteofrance_api.MeteoFranceClient method)

 	
 	get_phenomenon_by_id() (meteofrance_api.model.WarningDictionary method)

 	get_phenomenon_name_by_id() (meteofrance_api.model.WarningDictionary method)

 	get_picture_of_the_day() (meteofrance_api.MeteoFranceClient method)

 	get_rain() (meteofrance_api.MeteoFranceClient method)

 	get_warning_current_phenomenoms() (meteofrance_api.MeteoFranceClient method)

 	get_warning_dictionary() (meteofrance_api.MeteoFranceClient method)

 	get_warning_full() (meteofrance_api.MeteoFranceClient method)

 	get_warning_thumbnail() (meteofrance_api.MeteoFranceClient method)

I

 	
 	image_hd_url (meteofrance_api.model.PictureOfTheDay attribute)

 	image_url (meteofrance_api.model.PictureOfTheDay attribute)

 	(meteofrance_api.model.PictureOfTheDay property)

 	
 	insee (meteofrance_api.model.Place attribute)

 	(meteofrance_api.model.Place property)

L

 	
 	lat (meteofrance_api.model.Place attribute)

 	latitude (meteofrance_api.model.Place property)

 	
 	lon (meteofrance_api.model.Place attribute)

 	longitude (meteofrance_api.model.Place property)

M

 	
 	merge_with_coastal_phenomenons() (meteofrance_api.model.CurrentPhenomenons method)

 	(meteofrance_api.model.Full method)

 	
 meteofrance_api

 	module

 	
 meteofrance_api.model

 	module

 	
 	MeteoFranceClient (class in meteofrance_api)

 	
 module

 	meteofrance_api

 	meteofrance_api.model

N

 	
 	name (meteofrance_api.model.Place attribute)

 	(meteofrance_api.model.Place property)

 	
 	nearest_forecast (meteofrance_api.model.Forecast attribute)

 	(meteofrance_api.model.Forecast property)

 	next_rain_date_locale() (meteofrance_api.model.Rain method)

O

 	
 	Observation (class in meteofrance_api.model)

P

 	
 	phenomenons_items (meteofrance_api.model.Full attribute)

 	(meteofrance_api.model.Full property)

 	phenomenons_max_colors (meteofrance_api.model.CurrentPhenomenons attribute)

 	(meteofrance_api.model.CurrentPhenomenons property)

 	PictureOfTheDay (class in meteofrance_api.model)

 	Place (class in meteofrance_api.model)

 	position (meteofrance_api.model.Forecast attribute)

 	(meteofrance_api.model.Forecast property)

 	(meteofrance_api.model.Rain attribute)

 	(meteofrance_api.model.Rain property)

 	
 	postal_code (meteofrance_api.model.Place property)

 	postCode (meteofrance_api.model.Place attribute)

 	probability_forecast (meteofrance_api.model.Forecast attribute)

 	(meteofrance_api.model.Forecast property)

Q

 	
 	quality (meteofrance_api.model.Rain attribute)

 	(meteofrance_api.model.Rain property)

R

 	
 	Rain (class in meteofrance_api.model)

S

 	
 	search_places() (meteofrance_api.MeteoFranceClient method)

T

 	
 	temperature (meteofrance_api.model.Observation attribute)

 	(meteofrance_api.model.Observation property)

 	time (meteofrance_api.model.Observation attribute)

 	time_as_datetime (meteofrance_api.model.Observation property)

 	time_as_string (meteofrance_api.model.Observation property)

 	timelaps (meteofrance_api.model.Full attribute)

 	(meteofrance_api.model.Full property)

 	
 	timestamp_to_locale_time() (meteofrance_api.model.Forecast method)

 	(meteofrance_api.model.Rain method)

 	timezone (meteofrance_api.model.Observation attribute)

 	(meteofrance_api.model.Observation property)

 	today_forecast (meteofrance_api.model.Forecast attribute)

 	(meteofrance_api.model.Forecast property)

U

 	
 	update_time (meteofrance_api.model.CurrentPhenomenons attribute)

 	(meteofrance_api.model.CurrentPhenomenons property)

 	(meteofrance_api.model.Full attribute)

 	(meteofrance_api.model.Full property)

 	
 	updated_on (meteofrance_api.model.Forecast attribute)

 	(meteofrance_api.model.Forecast property)

 	(meteofrance_api.model.Rain attribute)

 	(meteofrance_api.model.Rain property)

W

 	
 	WarningDictionary (class in meteofrance_api.model)

 	weather_description (meteofrance_api.model.Observation attribute)

 	(meteofrance_api.model.Observation property)

 	weather_icon (meteofrance_api.model.Observation attribute)

 	(meteofrance_api.model.Observation property)

 	
 	wind_direction (meteofrance_api.model.Observation attribute)

 	(meteofrance_api.model.Observation property)

 	wind_icon (meteofrance_api.model.Observation attribute)

 	(meteofrance_api.model.Observation property)

 	wind_speed (meteofrance_api.model.Observation attribute)

 	(meteofrance_api.model.Observation property)

 _static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Météo-France Python API

_static/plus.png

